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Abstract. In the paper a problem of geometric phase decomposition for general evolutions in
the Hilbert space is addressed. The decomposition of total phase into dynamical and geometrical
parts employs a state representation in the noninteraction picture. The noninteraction picture is
introduced with the help of decomposition of the system evolution operator into two parts, the
one pertaining to free evolution and the other to interaction. The procedure requires the problem
to be an exactly solvable case of the Schrödinger equation. The most common class of such
problems includes dipole Hamiltonians, for which the evolution operator can be decomposed into
a combination of unitary operators. Geometric phase decomposition in the noninteraction picture
can be applied to general noncyclic evolutions, but for the cyclic states it reduces to the Floquet
decomposition. Defined this way, geometric phase possesses characteristic features of geometric
phase for the free system, but extends some stationary properties to temporal dependences. As a
case, the time-dependent relationship between geometric phase and the nonstationarity of a quantum
state is illustrated by an example of a spin-1

2 in a rotating magnetic field. It is shown that geometric
phase reaches a maximum when the spin state becomes completely nonstationary.

1. Introduction

Geometric phase was introduced by Berry [1] as a phase factor arising after a system completes
a closed path in the parametric spaceR. Although geometric phase is independent of path
parametrization{R(t), 0 < t < T }, some misconceptions arise in choosing a particular
parameter space. The problem is caused by the fact that geometric phase is associated with
the evolution of a quantum system and not with a particular Hamiltonian used to achieve the
evolution. Aharonov and Anandan [2] uniquely defined geometric phase for a givenprojection
of the evolution on the projective Hilbert spaceP. A given cyclic evolution on the projective
spaceP corresponds to the infinite number of possible motions along the curves in the Hilbert
spaceH and the possible Hamiltonians which propagate the state along these curves. Hence a
procedure of obtaining geometric phase for a given quantum evolution seems to be nonunique.
Every geometric phase decomposition in the Hilbert space employs a particular condition,
such as parallel transport or cyclicity of the initial state, in order to define geometric phase
uniquely.

In this paper an unambiguous geometric phase decomposition is constructed with the help
of a new condition. This enables determination of the geometric phase temporal dependences
for incomplete cyclic, as well as for general noncyclic evolutions, which is not always possible
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for other known decompositions. The system evolution operator is split into two parts, the one
corresponding to free motion of a system and the other owing to interaction. Geometric phase
is defined in the basis which initially coincides with the eigenstates of the free Hamiltonian,
and the time evolution of the basis is governed by interaction. The procedure employs state
vector representation which can be called the noninteraction picture, since it transforms away
interaction evolution from the total evolution operator. The separation of the total evolution
operator into parts requires the problem to be an exactly solvable case of the Schrödinger
equation. The noninteraction picture has already been introduced in [3], considering geometric
phase for a scattering wavefunction. In a similar manner we propose a decomposition which is
valid for all noncyclic evolutions in the Hilbert space, while for the cyclic states it transforms
into the Floquet decomposition, as a special case. Defined this way, geometric phase possesses
characteristic features of geometric phase for the free system, but extends some stationary
properties to temporal dependences. As a case, the time-dependent relationship between
geometric phase and the nonstationarity of a quantum state is illustrated by the example of a
spin-12 in a rotating magnetic field.

2. Nonuniqueness of geometric phase decomposition for evolutions in the Hilbert space

In this section we give a brief account of the problem of geometric phase nonuniqueness based
on the literature. Geometric phase is defined uniquely only for a given projection of evolution
on the projective Hilbert spaceP [2]. But there still exists freedom to choose a particular
Hamiltonian which propagates a system along the curve in the Hilbert spaceH. Consequently
determination of geometric phase for a given Hamiltonian or evolution in the Hilbert space is
nonunique. As was pointed out in [4, 5], all definitions of geometric phase for evolutions in
the Hilbert space employ particular conditions, imposed on the system evolution operator or
on its partU ′(t), which govern the evolution of the instantaneous eigenstate

|m(t)〉 = U ′(t)|m(0)〉 (1)

of the HamiltonianH(t). The most widely employed is the parallel transport condition [6–8]

〈m(0)|U ′+(t)
·
U ′ (t)|m(0)〉 = 0. (2)

The other is a cyclicity condition for the initial state:

|m(T )〉 = |m(0)〉 (3)

which was originally introduced by Berry [1]. The condition (3) for eigenstates is equivalent
to the periodicity requirement for the evolution operator

U ′(T ) = U ′(0) = I (4)

which plays a key role in the Floquet decomposition of geometric phase [9–13] (in the usual
notation:Z(T ) = Z(0) = I ). However, even condition (4) does not ensure the uniqueness of
geometric phase, since Floquet decomposition is not unique by itself [13].

The difference between these two approaches to define geometric phase for the trajectories
in the Hilbert spaceH can be obtained from the effect that conditions (2) and (3) cause on the
geometric phase decomposition for a particular trajectory in projective spaceP. For a given
path parametrizationC : {R(t ′), 0 < t ′ < t} in P, geometric phase for general evolutions is
expressed as [14]

γm[C] = arg〈m;R(0)|m;R(t)〉 + i
∫ t

0
dt ′

·
R (t ′) · 〈m;R(t ′)|∇R|m;R(t ′)〉 (5)
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where |m;R(t)〉 parametrizes eigenvector|m(t)〉 of the Hamiltonian. It is obvious that
condition (2) eliminates the second term in the geometric phase expression (5), while (3)
for time momentt = T eliminates the first. This means that in the first case geometric phase
is defined as a phase of complex number〈m;R(0)|m;R(t)〉, depending only on the initial and
final points of the curveC in P. In the second case, geometric phase is defined as an integral
along the curveC in the parametric spaceP.

The above cases clearly show the nonuniqueness of the geometric phase definition for
a particular Hamiltonian or evolution operator. There exists yet another issue concerning
ambiguity in defining geometric phase. This involves unitary transformations of the system
state, which also act on the geometric phase. Geometric phase decomposition is not invariant
under these transformations in the sense that the original geometric phase can be moved into
transformed dynamical phase. By the proper choice of transformation, geometric phase can be
completely removed, while dynamical phase retains the properties of geometric phase [5,15].
It follows that dynamical phase also changes under unitary transformations. Indeed, with the
help of particular transformations, dynamical phase could be modified in a way suitable for
convenient separation of geometric phase [16].

Ambiguity in geometric phase decomposition due to unitary transformations of the system
state could be removed by specifying the frame with respect to which the state vector is defined
(for details, see the discussion in [5]). This aspect is sometimes overlooked, especially when
comparing results of theoretical and experimental investigations of geometric phase. The
situation is especially evident in determining geometric phases for spin systems in a rotating
magnetic field. While the majority of theoretical investigations have been carried out in the
static laboratory frame [17, 18], some experiments verify the existence of geometric phase in
the rotating frame [19,20]. As it was pointed out in [5], however, such decompositions are not
identical.

3. Geometric phase decomposition in the noninteraction picture

First we start with the free Hamiltonian and determine geometric phase in the ordinary way
as a difference between total and dynamical phases. Then we will introduce interaction and
define geometric phase in the noninteraction picture.

Consider a system that is governed by a time-independent free HamiltonianH0 and
corresponding evolution operatorU0(t):

U0(t) = e−
i
h̄
H0t . (6)

If the system is initially prepared in the state|90(0)〉, then evolution of the state vector in time
is given by

|90(t)〉 = U0(t)|90(0)〉. (7)

Geometric phase for general evolutions, according to [21], is expressed as a difference between
the total and dynamical phases:

γ0(t) = arg〈90(0)|90(t)〉 + 1

h̄

∫ t

0
dt ′〈90(t

′)|H0|90(t
′)〉 (8a)

= arg〈90(0)|U0(t)|90(0)〉 + t

h̄
〈90(0)|H0|90(0)〉. (8b)

This is an expression of geometric phase for a free system. Suppose that the system is initially
prepared in the eigenstate ofH0:

|90(0)〉 = |m〉 (9)

H0|m〉 = Em|m〉 (10)
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and at the time momentt = 0 interaction is turned on. Now evolution of the system is governed
by the full HamiltonianH(t):

d

dt
|9(t)〉 = i

h̄
H(t)|9(t)〉 (11)

and corresponding evolution operatorU(t):

|9(t)〉 = U(t)|9(0)〉 U(0) = I (12)

where|9(0)〉 = |90(0)〉 = |m〉.
To proceed further we construct a reference basis with respect to which geometric phase

will be defined. We will require that geometric phase decomposition for a system with
interaction reduces to geometric phase for the free system in the case where the interaction
vanishes out. To fulfil such a condition, the reference basis must coincide with the eigenbasis
of the free Hamiltonian for the initial time moment and evolve with time under the influence
of interaction. For this purpose we need an interaction evolution operator in an explicit form.
Since interaction generally is described by a time-dependent Hamiltonian, we cannot obtain
the interaction evolution operator simply by exponentiating the interaction’s Hamiltonian as
in the case of free evolution (6). Therefore we restrict our analysis to a class of evolutions for
which the interaction contribution to the evolution operator can be explicitly separated in the
two possible ways:

U(t) = U1(t)U0(t) (13)

or

U(t) = U0(t)U1(t) (14)

whereU1(t) is evolution operator due to interaction. These two decompositions of evolution
operator represent exactly solvable cases of the Schrödinger equation (11). Note that, formally,
it is possible to build operatorial decompositions (13) and (14) with the help of substitutions
U1(t) = U(t)U+

0 (t) andU1(t) = U+
0 (t)U(t), respectively, for every exact solutionU(t)

without reference to any particular evolution. However, there exist cases whenU0(t) and
U1(t) are directly related to certain types of evolution: for example, systems governed by
dipole Hamiltonians, for which the evolution operator can be decomposed into a combination
of unitary operators [22,23]. These operators, under particular conditions, may be considered
as pertaining to either free or interaction evolution. As a criterion for such a classification in
the case of weak interactions one might take the characteristic frequency of each evolution
mechanism. It would be reasonable to assign fast motion of a system to the free evolution
operatorU0(t) and consider slower motion (perturbation) as interactionU1(t)with an external
field.

The meaning of decompositions (13) and (14) can be clearly explained by the example of
a spin precession in a magnetic field. LetU0(t) andU1(t) describe spin rotations about two
instant axes with different angular frequencies:U0(t) pertaining to fast motion (considered
as free evolution) andU1(t) belonging to slower evolution (interaction). Then evolution
operator (13) represents spin precession about the slowly rotating magnetic field direction,
the situation which usually occurs in geometric phase experiments with polarized neutrons.
More generally, this is an adiabatic approximation. The second case (14) represents nutation
of the precession axis in the rotating frame, as in magnetic resonance experiments with a spin
subjected to the bias constant and orthogonal harmonic magnetic fields. This is an example
of evolution operator decomposition into parts,U0(t) andU1(t), each of them representing
actual evolution.



Geometric phase decomposition 2387

The reference basis{|m(t)〉} is introduced by subjecting the eigenbasis of the free
Hamiltonian to the interaction evolution operatorU1(t):

|m(t)〉 = U1(t)|m〉 |m(0)〉 = |m〉. (15)

We introduce geometric phase in the noninteraction picture as a difference between the total
and dynamical phases, defined with respect to|m(t)〉:

γ (0)m (t) = arg〈m(t)|9(t)〉 + 1

h̄

∫ t

0
dt ′〈9(t ′)|H(t ′)|9(t ′)〉. (16)

By specifying a particular basis{|m(t)〉} we remove the ambiguity in geometric phase
definition, which was discussed in section 2. Therefore (16) represents one of the possible
choices of geometric phase decompositions in the Hilbert space. Note that in [1], Berry chose
|m(t)〉 to be the cyclic instantaneous eigenstate of the Hamiltonian. If this condition is assumed,
expression (16) exactly reduces to that of Berry.

Next we will show that decomposition (16) is equivalent to the general decomposition
of geometric phase [21], if it is applied to the state vector in the noninteraction picture. The
noninteraction picture is introduced in the opposite way to the interaction picture (see also [3]):

|9(0)(t)〉 = U+
1 (t)|9(t)〉 |9(0)(0)〉 = |9(0)〉 = |m〉 (17)

H(0)(t) = U+
1 (t)H(t)U1(t). (18)

Adopting the general procedure [21], one gets geometric phase decomposition in the
noninteraction picture:

γ (0)m (t) = arg〈9(0)(0)|9(0)(t)〉 + 1

h̄

∫ t

0
dt ′〈9(0)(t ′)|H(0)(t ′)|9(0)(t ′)〉 (19a)

= arg〈m|U+
1 (t)|9(t)〉 +

1

h̄

∫ t

0
dt ′〈9(t ′)|U1(t

′) U+
1 (t
′)H(t ′)U1(t

′) U+
1 (t
′)|9(t ′)〉

(19b)

= arg〈m(t)|9(t)〉 + 1

h̄

∫ t

0
dt ′〈9(t ′)|H(t ′)|9(t ′)〉 (19c)

which coincides with (16). This means that the noninteraction picture allows determination
of geometric phase via the common procedure (19a) which preserves the form (19c) of the
free geometric phase (8a) and, furthermore, reduces to it when interaction vanishes out. The
difference with noninteraction picture is that all characteristics are defined with respect to the
time-dependent reference basis{|m(t)〉}. First of all, it modifies the total phase, the first term
in (19c). The second term in (19c), the dynamical phase (with the opposite sign only), is the
mean value of the Hamiltonian and therefore is independent of the particular representation.
However, dynamical phase depends on the choice of basis{|m(t)〉}, since it specifies the
initial state for|9(t)〉, namely|m(0)〉 = |m〉, which in our case is the eigenvector of the
free Hamiltonian. Therefore the noninteraction picture affects not only the total phase part in
geometric phase decomposition, but also dynamical phase as well.

Now let us study geometric phase decomposition (16) for a particular form of Hamiltonian,
corresponding to evolution operators of the form (13) and (14). Evolution operator (13)
corresponds to the Hamiltonian

H(t) = U1(t)H0U
+
1 (t) +H1(t) (20)

whereH1(t) = ih̄
·
U1 (t)U

+
1 (t). Substituting (20) into (16), one gets

γ (0)m (t) = arg〈m|U+
1 (t)U1(t)U0(t)|m〉 + 1

h̄

∫ t

0
dt ′〈m(t ′)|U1(t

′)H0U
+
1 (t
′) +H1(t

′)|m(t ′)〉
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= − Emt
h̄

+
t

h̄
〈m|H0|m〉 + 1

h̄

∫ t

0
dt ′〈m|H1(t

′)|m〉

= i
∫ t

0
dt ′〈m(t ′)| d

dt ′
|m(t ′)〉. (21)

This result is similar to that of Berry, released from certain conditions, as was mentioned above.
This also coincides with the Floquet decomposition of the geometric phase for cyclic states, if
U1(t) is assumed to be periodic. While being of the same form as the Floquet decomposition,
decomposition (16) extends the method to incomplete cyclic evolutions. In this way, it enables
examination of the temporal evolution of cyclic geometric phase, the final point of which,
γ (0)m (T ), coincides with the Floquet result.

The second evolution operator (14) corresponds to the Hamiltonian

H(t) = H0 +U0(t)H1(t)U
+
0 (t) (22)

for which geometric phase decomposition (16) results in

γ (0)m (t) = arg〈m(t)|U0(t)|m(t)〉 + 1

h̄

∫ t

0
dt ′〈m(t ′)|H0 +H1(t

′)|m(t ′)〉. (23)

In particular, an important consequence follows from (23) for interactions whose Hamiltonians
H1(t) have no diagonal matrix elements in the eigenbasis{|m〉} of the free Hamiltonian:

〈m|H1(t)|m〉 = 0 (24)

which is equivalent to the parallel transport condition (2). In this case the second term in (23)
integral vanishes and geometric phase becomes

γ (0)m (t) = arg〈m(t)|U0(t)|m(t)〉 + 1

h̄

∫ t

0
dt ′〈m(t ′)|H0|m(t ′)〉. (25)

This is analogous to the geometric phase expression in the absence of interaction (8a), except
that in (8a) vector|90(0)〉, indicating initial state, is time independent, while in (25), instead, the
reference basis|m(t)〉 is time dependent. This means that geometric phase in the noninteraction
picture possesses all the characteristics of the free geometric phase. Interaction only modifies
the reference basis, which is equivalent to the change of initial state in (8a). Since in most
cases|H1(t)| � |H0|, U1(t) represents slower evolution thanU0(t). Therefore the behaviour
of geometric phase (25) may be regarded as if determined by free evolutionU0(t) in the slowly
varying instantaneous eigenbasis{|m(t)〉}. The condition (24) is frequently encountered. In
particular, it is satisfied for a spin in a rotating magnetic field, when resonance is reached, as
will be discussed in the following example.

4. Geometric phase for a spin-12 in a rotating magnetic field

To illustrate some geometric phase properties in the noninteraction picture we will study an
example of a spin-12 particle in a rotating magnetic field, which is a subject of investigations
in magnetic resonance theory and which has attracted much attention since the discovery of
geometric phase.

Consider a spin-12 subjected to an external magnetic fieldB = (B1 cosωt, B1 sinωt, B0).
The corresponding Hamiltonian is given by [24]

H(t) = h̄ω0

2
σz +

h̄ω1

2
(σx cosωt + σy sinωt) (26)

whereσ = (σx, σy, σz) are Pauli matrices,ω0 = gB0, ω1 = gB1 andg is the gyromagnetic
ratio. The solution of the Schrödinger equation

d

dt
|9(t)〉 = i

h̄
H(t)|9(t)〉 (27)
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Figure 1. Temporal characteristics of the geometric phase for a spin-1
2 in a constant magnetic field

for a set of parametersθ of the initial state: 30◦ (dotted curve), 60◦ (dashed curve), 90◦ (solid
curve).

is well known [24]:

|9(t)〉 = U(t)|9(0)〉 = e−i ωt2 σze−i �t2 (n,σ )|9(0)〉 (28)

where� = (ω2
1 + δω2)1/2, n = �−1(ω1, 0, δω), δω = ω0 − ω. The first term in (26) may be

considered as a free HamiltonianH0 = h̄ω0
2 σz, and the second one as that of the interaction. Free

evolution is defined by the evolution operatorU0(t) = exp(−i ω0t

2 σz), and the free geometric
phase for the initial state|9(0)〉 = (cosθ/2, sinθ/2)T , according to (8b), is

γ0(t) = −arctan

[
cosθ tan

ω0t

2

]
+ cosθ

ω0t

2
. (29)

This is an expression of geometric phase for a spin-1
2 in a constant magnetic field. The

most characteristic features of geometric phase, nonlinearity [25] and phase jumps [26], are
illustrated in figure 1. There, geometric phase is plotted over several periodsT0 = 2π/ω0 for
different initial conditions in order to compare the characteristics with the case of geometric
phase under interaction, which extends over a much longer periodT = 2π/�.

We define the interaction evolution operator in accordance with decomposition (14) as

U1(t) = U+
0 (t)U(t) = ei δωt2 σze−i �t2 (n,σ ). (30)

The choice of decomposition (14) is reasonable in the case of a weak harmonic fieldB1� B0

in the vicinity of resonance|δω| � ω0. In this case,U1(t) represents rotations with frequencies
δω and�, much smaller thanω0, the frequency of the free evolution. Such a situation normally
occurs in magnetic resonance experiments.

Note that an alternative choice of operator decomposition (13)

U1(t) = U(t)U+
0 (t) = e−i ωt2 σze−i �t2 (n,σ )ei ω0t

2 σz (31)

would lead to both free and interaction evolution operators having high frequencyω, ω0

components.
Geometric phase decomposition (16) for the initial statem = +1

2 yields

γ
(0)
1/2(t) = β(0)1/2(t)− α(0)1/2(t) (32)

β
(0)
1/2(t) = arg〈 12|U+

1 (t)U(t)| 12〉 = arg〈 12|ei �t2 (n,σ )e−i ω0t
2 σze−i �t2 (n,σ )| 12〉
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= − arctan

[(
cos2

�t

2
+ (n2

z − n2
x) sin2 �t

2

)
tan

ω0t

2

]
(33)

α
(0)
1/2(t) = −

1

h̄

∫ t

0
dt ′
〈
1

2

∣∣∣∣U+
1 (t
′)H(t ′)U1(t

′)
∣∣∣∣12
〉

= − 1

2

[
ω0

(
n2
z t + n2

x

sin�t

�

)
+ ω1nxnz

(
t − sin�t

�

)]
. (34)

In the case of exact resonance when a perpendicular magnetic field rotates with angular
frequencyω equal to a Larmor frequencyω0, δω = 0, equations (32)–(34) become

γ (0)res (t) = β(0)res(t)− α(0)res(t) (35)

β(0)res(t) = −arctan

[
cos

ω1t

2
tan

ω0t

2

]
(36)

α(0)res(t) = −
ω0

2

sinω1t

ω1
. (37)

As the interaction vanishesω1→ 0, geometric phase approaches zero and in the limit only the
dynamical phase remains:β(0)res(t) = α(0)res(t) = ω0t/2. This situation corresponds to a system
evolving in one of its stationary eigenstates, when only dynamical phase may exist.

For the resonant case one may check the validity of the parallel transport condition (24).
The interaction evolution operator (30) forδω = 0 turns intoU1(t) = exp(−i ω1t

2 σx). The
corresponding HamiltonianH1(t) = h̄ω1t

2 σx satisfies (24) because of the orthogonality of Pauli
matrices.

From the great variety of evolutions, we make closer examination of the cyclic states, for
which an initial state after fixed timeT returns to itself up to a phase factor. This imposes
restrictions on the evolution operatorU(T ) in (28):

�T = 2πp and ωT = 2πq (38)

with p and q being integer numbers. Geometric phase dependences on time for cyclic
evolutions are shown in figures 2 and 3. There, the time variable and other parameters are
normalized to the fundamental periodT = 2π/� in order to define the parameters in terms of
phases. In figure 2 curves are plotted for a set of deviationsδω from the resonant frequency.
In principle, what makes the curves different are the Poincaré sphere coordinatesω0t andθ
in (29), or the relevant effective parameters in (32)–(34) [26]. Whileω0t designates a time
moment of geometric phase jump,θ determines the amplitude and slope of the jump. The
effect of summation of separate jumps finally determines the shape of the curves. The most
characteristic features of geometric phase temporal evolution, namely nonlinearity [25] and
phase jumps [26] are also noticeable in the noninteraction picture. The time dependence of
the dynamical phase is smoother than that of the geometric phase. As is evident from (34),
only linear and sine functions appear in the expression of dynamical phase. Geometric phase
for resonant evolutions withδω = 0 is shown in figure 3. One can see a change of geometric
phase by±π after each period. Geometric phaseγ (0)res (t) is time periodicγ (0)res (T ) = 0 (without
ambiguity 2πk) only for evolutions withωT = ω0T being integer multiples of 4π . This
reflects the fact that for such evolutions spin rotates ‘up’ and ‘down’ along symmetrical paths
with respect to the Poincaré sphere coordinatesω0t and θ . Geometric phase lost by spin
rotating ‘down’ is completely recovered when travelling ‘up’. The parallel with ‘geometric
phase transition’ is strengthened by the fact that geometric phase reaches a maximum for the
completely nonstationary spin state, i.e. when the probability for the spin to be in one of its
two eigenstates is 0.5. That is, spin possesses the greatest ability to perform a transition when
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Figure 2. Temporal characteristics of the geometric phase for a spin-1
2 in a rotating magnetic field

for a set of deviations from resonanceδω/ω0: 0 (solid curve), 0.007 (dashed curve), 0.01 (dotted
curve). Other parameters are�T = 2π , ωT = 48π .

Figure 3. Temporal characteristics of the geometric phase for a spin-1
2 in a rotating magnetic field

for the resonant caseδω = 0,�T = ω1T = 2π and a set of resonant frequenciesωT = ω0T :
46π (solid curve), 48π (dashed curve), 50π (dotted curve).

geometric phase is maximal. The probability for the spin being initially in them = +1
2 state

to complete a transition to them = − 1
2 state at the time momentt is

P− 1
2 ,+

1
2
(t) = |〈− 1

2|U(t)| + 1
2〉|2 = n2

x

1− cos�t

2
(39)

which in the case of resonance (nx = 1) equals 0.5 for time moments�t = {π/2, 3π/2}. As is
evident from figure 3, these are the maximum points of the geometric phase for the resonant case
ωT = ω0T = 48π . The geometric phase connection with the nonstationarity of a quantum
state for complete paths is already known. It was shown in [27] that geometric phase is maximal
for cyclic evolutions, for which initial and final states are completely nonstationary. The
noninteraction picture extends the relationship between geometric phase and nonstationarity
of state to incomplete cyclic, as well as to general noncyclic evolutions. It therefore enables
investigations of geometric phase temporal characteristics.
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5. Conclusions

The proposed decomposition of geometric phase is based on the separation of the system’s
evolution operator into parts pertaining to the free motion and interaction. While eliminating
ambiguity in geometric phase decomposition, such a partition also manifests the arbitrariness
due to the freedom in selecting which part of evolution should be assigned to free motion
and which to interaction. The method does not impose any restrictions on the form of these
separate operators of evolution, except that they must be known prior to the evaluation of
geometric phase. It means that the free evolution, as well as being perturbed, must represent
exactly solvable problems. In the case of weak interactions a choice of (13) or (14) type
of separation of evolution operator can be made based on the characteristic frequency of the
particular evolution operator. The procedure can be extended for a number of interactions
following each other in the order (13) or (14). In this case, geometric phase can be defined
with respect to each successively applied interaction. The method provides a procedure to
compare geometric phases for the successive decompositions (cf (8a) and (25)). It therefore
enables investigation of the influence of a particular interaction on the geometric phase. As is
shown in the example, for particular cases, geometric phase is closely related to the transition
induced by the corresponding interaction.

Note added in proof. After the paper was finished, we were pointed to the problem of different dimension spaces
associated with two types of geometric phase: (i) adiabatic Berry phase [1] resulting from a closed path in some
parameter space and (ii) cyclic Aharonov–Anandan phase [2] resulting from a closed path in the parametric Hilbert
space. This also falls within the scope of applications of our method since it can be used in both adiabatic and
nonadiabatic cases, as illustrated by the given above example of a spin-1

2 particle in a magnetic field. Indeed, for a
particle of any spin in a rotating magnetic field, adiabatic Berry phase is defined in the 2-sphere magnetic field space.
While for a particle of spins in a constant magnetic field, Aharonov–Anandan phase is associated with 2s-dimensional
projective Hilbert space [28], which is a 2-sphere only fors = 1

2 particles. It is well known [2, 6, 8] that geometric
phase is due to the holonomy of a connection in a principal fibre bundle over the projective Hilbert space of rays, and
depends only on the path traced by the ray and the curvature of the ray space. It may seem that geometric phase cannot
be defined for spin in rotating and constant magnetic fields simultaneously in the same framework, since it involves
different projective spaces. However, we suppose that this is a matter of different approaches used to define geometric
phase. As has been noted earlier [17], geometric phase can be calculated in two ways: (i) by a pure geometric
method describing a ray path in the projective Hilbert space, or alternatively, (ii) by determining the dynamics, which
generates the ray. We have chosen the second alternative, the dynamical approach, based on the evolution operator
method, previously developed and used by a number of authors [4, 5, 7, 10]. This approach does not give insight
into the topological properties of geometric phase spaces, but it allows us to treat different kinds of dynamics in the
unified way. To merge both geometric and dynamical approaches, a more general theory is required, perhaps one that
includes group-theoretical description similar to [8].

Acknowledgment

We thank the referee who brought to our attention the problem of different dimension spaces
of geometric phase.

References

[1] Berry M V 1984Proc. R. Soc.A 39245
[2] Aharonov Y and Anandan J 1987Phys. Rev. Lett.581593
[3] Newton R G 1994Phys. Rev. Lett.72954
[4] Cheng C M and Fung P C W1989J. Phys. A: Math. Gen.223493
[5] Giavarini G, Gozzi E, Rohrlich D and Thacker W D 1989J. Phys. A: Math. Gen.223513
[6] Simon B 1983Phys. Rev. Lett.512167
[7] Jordan T F 1988J. Math. Phys.292042
[8] Anandan J 1988Phys. Lett.A 129201



Geometric phase decomposition 2393

[9] Moore D J 1990J. Phys. A: Math. Gen.23L665
[10] Moore D J and Stedman G E 1990J. Phys. A: Math. Gen.232049
[11] Furman G B 1994J. Phys. A: Math. Gen.276893
[12] Monteoliva D B, Korsch H I and Nunez J A 1994J. Phys. A: Math. Gen.276897
[13] Moore D J 1990J. Phys. A: Math. Gen.235523
[14] Garcia de Polavieja G and Sjoqvist E 1998Am. J. Phys.66431
[15] Giavarini G, Gozzi E, Rohrlich D and Thacker W D 1989Phys. Lett.A 138235
[16] Wu L A, Sun J and Zhong J Y 1993Phys. Lett.A 183257
[17] Wang S J 1990Phys. Rev.A 425107
[18] Yan F, Yang L and Li B 1999Phys. Lett.A 251289
[19] Suter D, Mueller K T and Pines A 1988Phys. Rev. Lett.601218
[20] Lisin V N, Fedoruk G G and Xaimovich E P 1989JETP Lett.50232
[21] Samuel J and Bhandari R 1988Phys. Rev. Lett.602339
[22] Mostafazadeh A 1997J. Math. Phys.383489
[23] Fernandez C D J andRosas-Ortiz O 1997Preprint CERNquant-ph/9706044
[24] Abragam A 1961The Principles of Nuclear Magnetism(Oxford: Clarendon)
[25] Gong L, Li Q and Chen Y 1999Phys. Lett.A 251387
[26] Bhandari R 1991Phys. Lett.A 157221
[27] Zeng Y and Lei Y A 1994 Preprint CERNSCAN-9410266
[28] Bouchiat C and Gibbons G W 1988J. Physique49187


